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APPLICATION OF THE CONDITIONAL POPULATION-MIXTURE MODEL TO IMAGE SEGMENTATION

Stanley L. Sclove

University of Illinois at Chicago Circle

Chicago, Illinois

Abstract Assumption (2). With the i-th pixel (i=l,....n =

-,The problem of image segmentation is consid- IJ) is associated a group (segment) identification
ered in the context of a mixture of probability paramet'r) yi which is equal to g if and only if

distributions. A modification of the usual pixel i belongs to segment g. Each pixel thus
approach to mixtures of distributions is employ- gives rise to a pair (X,y) where X is observable
ed. Parametric families of distributions are and y is not.
considered, a set of parameter values being Remarks. (i) In the context of this model "seg-
associated with each distribution. In addition, mentation"is merely estimation of the parameters
an identification parameter is associated with Yi for the n pixels. (ii) In regard to Assumption
each observation, indicating from which distri-
bution the observation arose. Thus, the segmen- (1), when we are working with some parametric

tation problem is cast as a problem of statisti- family, indexed by a parameter, say k, then hg
cal estimation. Segmentation algorithms are takes the form h (x) = h(x; ). The parameters
obtained by applying a method of iterated maximum g - -9
likelihood to the resulting likelihood function., are generally unknown. (iii) This model is a

population-mixture model.
1. Introduction It is convenient to reparametrize. Replace

Consider a digital image, given as a set of Yi by a k-vector . which consists of k-l zerosp-dimensional vectors x = CXlix
-ij .- , X pij and a single 1, the position of the 1 indicating

i ,2....I, j = 1,2,...,J. which segment pixel i belongs to; i.e., 6. has a

Examples. p= 3, x red level x = 1 as its y.-th element and O's elsewhere. TheEmle.()p 3Xlii = rdlvx2ij 1 s i

green level, x3ij = blue level of pixel (i,j). p.d.f. of X. given B., is

(ii) p = 1 (monochromatic image), xlij = xij = f(,Ie.) k hg(x ), (1.1)

gray level of pixel (i,j). whr is g-l of g.7

The problem of image segmentation is, simply where 8gi is the g-th element of--

stated, the problem of putting the pixels (i,j)
into groups (classes, clusters), i.e., the "seg- 2. The Probability Model

ments." The model of See. 1 should be contrasted with
Define a segmenting as a partition of the the usual population-mixture model, in which any

set of pixels, i.e., as a collection [C1 ,... ,Ck observation X. is chosen from Population g with
-il

of disjoint sets such that each pixel belongs probability w , so that in this standard popula-
to one and only one set C . Each set C is a tion-mixture godel the p.d.f. of X. is
segment (cluster). Here &e shall assum§ that ik T h.

the integer k is specified in advance. (A modi- J(i;7l,-.,k
) = g=1gh(X) (2.1)

fication of the algorithm allows some of the il,... ,n. This standard mixture model has been
segments to join or split, thereby permitting used for pixel classification; see, e.g., Eklundh,
fewer or more than k clusters to form. See Sec. Yamamoto, and Rosenfeld.5 The purpose of the pre-
6.2 below.) sent paper is to suggest the conditional mixture

In what follows we shall write xi rather model as an alternative and to present some algo-

than xij, using a single subscript i rather than rithms derived from it. Further discussion of the
model, in the context of statistical cluster analy-

the double subscript ij for the pixels, even sis, and further references are given by Sclove.7

though they are a two-dimensional array. A likelihood approach, whether based on the
It seems reasonable to consider the follow- standard or the conditional mixture model, is

ing model for segmentation problems: illuminating in that it can show how ad hoc opti-
Assumption (1). With the g-th segment (g1..,k) mality criteria (objective functions) which have
is associated a probability distribution with been proposed relate to likelihood functions in
probability density function (p.d.f.) h (L). particular probability models.

The p.d.f.'s are generally unknown. Note that (1.1) can be written as a product
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k 0
f(X.1f.) = y [h (x )] gi (2.2) (( (s~l) () Ts) )

T II gfr 1 g-- L(B IT n > L(B T
The form (2.2) is often more convenient, and we That is, at no stage of the procedure can the
shall use it in what follows, value of the likelihood decrease; however, there

3. The Segmentation Algorithm is no guarantee of convergence to the global maxi-
mum (neither do alternative clustering algorithms

Using the form (2.2), one sees that the joint guarantee convergence to the global max of their
p.d.f. of the X.'s, given the 6.'s, is objective functions). To see how the procedure

n k 6 .can fail to converge to a global max, suppose it

11 [h(x.; )] gi happens that L(B I T ) > L(B,T s ) ) for all B,
i=o g=r L(B (S T (s- ) ) > L(B(S T) for all T. Then the

The likelihood is to be maximized over all assign- or
ments of pixels to segments and over all permis- procedure will terminate at the s-th stage, with-
sesof pixamelto vasMn ad oer a ems out having necessarily reached the global max.
sible parameter values. Many ad o schemes can That is, if, having maximized w.r.t. one of the
be applied to this maximization problem. E.g., variables B and T, we happen to find ourselves atone way to maximize is to start with a given seg- a(rlte)mxwr.thohremynt

mentation, take each observation successively and a (relative) max w.r.t, the other, we may not

shift it to the first segment for which a shift

results in an increase in likelihood, and loop 4. Application to Particular Distributions
through the data unitl no pixel changes segments. Now we consider application of this general

The algorithm to be developed here is an method to particular families of distributions.
iterative, back-and-forth procedure. We first First we consider normal distributions with common
maximize with respect to (w.r.t.) the 6's (hold- covariance matrix, for in this case it becomes
ing the $'s fixed at initial values), thenw.r.t. clear how the model establishes a link with some
the a's Tholding the 8's fixed at the values ob- existing clustering procedures.
tained in the previous stage), then again w.r.t.
the O's (holding the O's fixed at the values ob- h.l. Multivariate Normal Populations with Common
tained in the previous stage), etc. We stop when Covariance Matrix
no 0 changes, i.e., when no pixel changes seg- In the case of normal populations with means
rients, or when a specified amount of computer gl,...,k, and common covariance matrix Z, the
time is used. ,o

An alternative of starting the procedure is likelihood takes the form
to start with an initial segmentation rather than n k
with initial guesses of the B's. (27r) than ,g-nP/- 1 i-n/ p n k

It is clear that, for fixed values of the i=1 g 1

B's, say 8's, the likelihood is maximized, for where the quadratic form q is given by
each i, by taking q(x;i,!) = (x-L)'r-(x-j)

the (Mahalanobis) distance between x and p in the
1Fif h(I; ) max 1h(x.,o)} (3.1) metric of . Here (3.1) is equivalent to

gi 0 otherwise . <t<k

(In case of ties an arbitrary choice is made.) In 1 if q( -;gZ) = m( _
other words, segmentation proceeds by allocating gi. 0 otherwise. ---

pixel i to the group g for which the estimated That is, pixel i is assigned to that group to
probability density of the observation is whose tentatively estimated mean vector it is clo-
largest. sest, where the distance is in the metric of the

Note that, having tentatively estimated the tentatively estimated covariance matrix. Having
e's at any stage, i.e., having tentatively segmen- estimated the 's, we have multivariate normal
ted the image, estimation of the 's is reduced observations arranged into groups; maximization
simply to ordinary maximum likelihood estimation w.r.t. the 's and E is accomplished by taking
in the particular parametric family at hand. the an v s estmats fo theing
This is a particular advantage of this approach. the group mean vectors as estimates for the gs,

Let deotethesetof 6's nd th se of and the within-groups su-of-products matrix gives
Let T denote the set of Z's and B the set of the estimate of E. The procedure is iterated:

_ 'S. Let L(B,T) denote the likelihood. Let using new estimates v , g = 1,..., k, and E, the

B(S) -g
B denote the value of B which maximizes L at rule (4.1) is applied again. Then new u's and a

the s-th stage of the iteration, and let T new Z are calculated; etc. The Mahalanobis dis-
denote the value of T which maximizes L at the tances can be computed efficiently; see, e.g.,

s-th stage of the iteration. Then T maximizes Anderson1I p. 107.

L(B(S T) w.r.t. T, and B(S ) maximizes L(B,T (S- l ) Relationship with the i8odata procedure. This
w.r.t. B. This back-and-forth maximization is an scheme is a Mahalanobis-distance version of Ball
example of the relaxation method (South elt'8 and Hall's isodta clustering proceure 2  Ieodata
method); see Ortega & lheinboldtT (pp. 214ff.) and proceeds as follows. One starts with tentative

Southwell.9,10 It is true that estimates of cluster means and assigns each indi-
(S+) T(S) (S)(S) vidual to the mean to which he is closest. (The

L(B T L(B T isodata scheme uses Euclidean distance, or
-and
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modified Euclidean distance in which different maximized likelihood is inversely proportional to
weights are assigned to the p dimensions.) The a positive power of the determinant.
cluster means are then re-estimated, and one 5. Comparison with the Method
loops through the data again, reassigning the Based on the Standard Mixture Model
individuals, etc. Note the similarity to our
scheme: We start with tentative estimates of Wolfe has considered clustering based on the
the p's and E and assign each individual to the standard mixture model.1 1  Under that model the
mean to which he is closest, using Mahalanobis posterior probability that Individual i belong to
distance in the metric of the tentatively esti- Group g is k
mated covariance matrix. The P's and E are then
re-estimated, the individuals Tpixels) are re- I h(x.;B )/ n .^ h(x.; ^) . (5.1)
allocated to clusters (segments), etc. g - g -i

An important difference is that our scheme If we can obtain estimates for 8 , T , g = 1,...

employs Manalanobis distance rather than Euclid- they can be substituted to provide an estimate of
ean or weighted-Euclidean distance. (It is (5.1),
worth emphasizing that it is the Mahalanobis k

nh(x.;B )/ 7Th(. 52
distance based on the within-groups sum-of- g - £=l i Z --I "(
products matrix that arises here; some data Individual i is assigned to that group g for which
analysts use the total sum-of-products matrix '3 the estimated posteriur robability of group mem-
which is not appropriate; see, e.g., Chernoff. esimated i st.On th ofhgr mem-bership, (5.2), is largest. On the other hand,

Some experiments with the algorithm, in the with the conditional mixture model Individual i
context of statistical cluster analysis, are i n th a groupre ordwhichdheiestlma8 is assigned to that group g for which the estima-

reported in Sclove. 
8

Relationship with the k-means procedure. ted densty h(x. ;i ) is largest.
r the computation a little differently, Wolfe has-roided computer programs for the

Arranging the comatiof t e difter case of normal distributions. As is well known,
ut athe maximum likelihood equations for mixture prob-

each individual pixel is assigned rather than lens are messy. He solves them by a multivariate
waiting until all have been assigned, produces a Newton-Raphson method of iterative solution. ThisMahalanobis-distan e version of MacQueen'sNetnapsnmhooftetveolin.Ts
k-means procedure.9 involves the assignment of arbitrary initial values

to start the iterative solution, as does the gene-

4.2. Multivariate Normal Populations with ral method described here.
Different Covariance Matrices

6. Some Remarks on Statistical Inference
The algorithm generated for this case turns The maximum likelihood estimate of (BT) is

(ut not to be simply to use a different Manalano-
bis distance for each cluster. (The complication the value (B,T) for which the likelihood L is
which occurs is analogous to that in classifica- largest. The quantity L(B,T) is the corresponding
tion--discriminant analysis--where one is led to
quadratic discriminant functions if the covariance maximum value of the likelih od. Po approximate
matrices differ.) The likelihood is

(B,T) one uses the algorithm. Let X(B,T) =
'2, -e ./2

(2 )-np / 2
1 f g exp[-8 .q(x. ;p')/21. L(B,T)/L(B,T). Let F denote the large sample
ig -9 ig g c.d.f. of -2 In A, i.e., lim Pr[-21n X(B,T)<x]

Equation (3.1) becomes = F(x). Suppose that F is independent of the true
1 if setting £=g maximizes values (B,T). E.g., it may be the c.d.f. of achi-

0 1 _-1/2Cexp[-q(.;. 4,£)/21 (4.2) square distribution with an appropriate number of
0 otherwisedegrees of freedom; it is necessary to investigate
0 otherwise . the extent to which the large sample theory of the

Maximizing the expression in (4.2) is equivalent generalized likelihood ratio applies when there
to minimizingnl + q(x;,) are incidental parameters.

It has been noted [see, e.g., Day I that in 6.1. Confidence Sets
the standard mixture model for this case the sup- Let x denote the upper a-th percentage point
remum of the likelihood is infinity. This is of F. Then 1-a = F(x ) Pr[-2 In )(B,T) < x _
reflected in the fact that in our algorithm it r[-2 ZnL(B,T) < x--_ + 2 £nL(B,T)J, so that
would be possible that at some stage one of the = a
clusters would consist of a single individual, {(B,T): -2 inL(B,T) < x + 2 2n(B,T)} is an ap-
so that the tentative estimate of the mean of
that group would be the vector of observations -)

for that individual, and the tentative estimate Denote by (B,T) the estimates produced by the
of the covariance matrix of that cluster would .be undefined. It is also possible for the obser- algorithm. Then L(B,T) < L(B,T). Thus a conser-beudfnd" ti lopsil o h bcr vative confidence set--one that contains more
vations in a given cluster to be very close to values ofnfidenctan the truehcofidencensetoan

lying on a lower-dimensional subspace, so thatvalues of (B,T) than the true confidence set andhas confidence coefficient at least 1-a -- is
the tentative estimate of the covariance matrix
could have an arbitrarily small determinant, and ((B,T): -2 In L(B,T) < x + 2 In L(B,T)}
the maximized likelihood could be arbitrarily
large, for the contribution of Group g to the



6.2. Some Remarks on Choice of k As a corollary to this assumption, it follows that
the 6.'s are functionally related, in as much as

The algorithm can be run with different -

choices of k and the results compared. Note each 6. must be equal to one of its eight neigh-
that the likelihood function is a different--
function for different values of k. Denote bors. It would be interesting to study the prob-funcionfordiffren vaues f k Deotelem resulting from maximizing the likelihood func-
this dependence upon k by writing the likelihood tem resulti foaiizng terlieli fuction under this condition. Alternatively, if the

as L k(Bk T k). Let B , Tk denote the maximum like- e.'s are then treated as random, they would be

linood estimates for fixed k. Following Wolfe's a two-dimensional Markov process. It will be
approach for the standard mixture model, one interesting to study the problem of estimating
might make a sequence of hypothesis tests to them in this model.
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